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The finite action Euclidean solutions of gauge theories are shown to indicate the existence of tunneling between 
topologically distinct vacuum configurations. Diagonalization of the Hamiltonian then leads to a continuum of vacua. 
The construction and properties of these vacua are analyzed. In non-abelian theories of the strong interactions one 
finds spontaneous symmetry breaking of axial baryon number without the generation of a Goldstone boson, a mech- 
anism for chiral SU(N) symmetry breaking and a possible source of T violation. 

Polyakov [1 ] has recently pointed out  that the 
Euclidean classical equations o f  motion of  gauge theo- 
ries have soliton-like solutions and has suggested that 
when properly included in the Euclidean functional 
integral they may have a bearing on the dynamics of  
confinement. The physical interpretat ion of  these solu- 
tions has, however, been obscure since they are local- 
ized in time as well as space. In this letter we shall show 
that Euclidean gauge solitons describe events in which 
topologically distinct realizations of  the gauge vacuum 
tunnel into one another and that this process radically 
changes the nature of  the vacuum state. In fact, we 
find a continuum of  vacua, each one o f  which is a 
superposition of  the vacua with difinite topology and 
stable under the tunnelling process. The new vacua are 
the ground states of  independent ,  and in general, in- 
equivalent worlds (most striking, P and T are spontan- 
eously violated in some o f  them!).  When massless 
fermions are present, the vacuum tunnelling process 
forces a redefinition of  the fermion vacuum as well and 
leads directly to spontaneous breakdown of  chiral in- 
variance without  generating a "n in th"  Goldstone boson. 
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We have, in effect, shown that the vacuum "seizes" as 
suggested by Kogut and Susskind [2] ,  and identified 
the mechanism by which it does so. Our primary aim 
in this letter will be to give arguments for the existence 
of  the new vacuum structure and to present the correct 
form of  the functional integral appropriate to studying 
the properties of  a particular vacuum. In the spirit o f  
displaying qualitative consequence of  the new vacuum 
structure we shall also briefly summarize results obtained 
from rather crude approximations to the functional 
integral. 

To explore the structure of  the vacuum we study 
the Euclidean functional integral 

(0lexp(-Ht)10) ~ f[DAuD¢] 
t--~ 

x exp -fddx[ .e(A., ÷ -~gf] ) (1) 

where d is the dimension of  space time, £ is the 
Langrange density of  the theory,  ~Ogf is a gauge-fixing 
term and the integration is to be done over all fields 
that approach vacuum values ~Fuv = 0) at infinity. Now 
since Fur  = 0 implies A~ = g - "  (x)aug(x) takes on 
values in the gauge group, G, any gauge field included in 
the functional integration defines a map o f  the sphere 
at Euclidean infinity into G. As pointed out by  
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Belavin et al. [3] these maps fall into homotopy 
classes corresponding to elements of  the homotopy 
group, I ld_l(G).  For most non-Abelian groups in four 
dimensional space time and U(1) in two dimensional 
spacetime, this homopoty  group is Z. In these theories 
(the only ones we consider) the gauge fields integrated 
over in eq. (1) fall into discrete classes indexed by an 
integer v running from - oo to + oo (we shall use the 
notation [DAu] v to denote functional integration over 
the vth class). Thus there is actually a discrete infinity 
of  funtional integrals and one must ask which, if any, 
is the "right" one. 

One can clearly see what is going on by working in 
the gauge A 0 = 0 and requiring Fur to vanish outside 
a large, but finite, spacetime volume, V (this boundary 
condition is, of  course, gauge invariant). The dynamical 
variables are now just the space components, A i, for the 
vector potential and at large negative and positive times 
they must take on time independent vacuum values, 
Ai(x  ) = g-1  (x)aig(x). The topological quantum number, 
v, associated with any particular Euclidean gauge field 
time history may be written as a gauge invariant volume 
integral 

1 fd4x (Fu~puv), d = 4 v = tr 
87r 2 

(2) 

-~rfd2xeu~F u~ , d = 2 .  

In both cases, the integrand is a total divergence and 
A 0 = 0 gauge v may be rewritten as a surface integral, 
v = n(t  = + oo) _ n(t  = - oo), where 

1 e i i k fd3x  tr (A i A / A k ) ,  d = 4 n = _ _  
67r 2 

(3)  

=~-~fdxA 1 , d= 2. 

With no loss of  generality (we have the freedom of  
making time independent gauge transformations) we 
may choose n(t = - o0) to be an integer. Then since 
v is integral the gauge vacuum configuration at t = - oo 
must also have integral winding number n(+ oo) = 
n(--**) + ~. 

Therefore we must admit the existence of  a dis- 
crete infinity of  vacuum states, In), labelled by a wind- 
ing number taking on integral values from - oo to + ~.  

The interpretation of  the multiplicity of  Euclidean 

functional integrals corresponding to different v-classes, 
is then straightforward: 

(nlexp(-Ht)lm) tZ~ f [DAu...] (n-m) 

X e x p ( - - f d d x [ . ~ ( A u )  + d~gf] } . 

(4) 

The functional integral over homotopy class v describes 
a vacuum-to-vacuum transition in which the vacuum 
winding number changes by v! Now the minimum action 
for v = 0 is zero (corresponding to A u = 0) so that in the 
WKB sense the In) ~ In) amplitude is O(1). In the v 4 :0  
sectors the minimum action is in general non-zero - for 
v = 1 in four dimensions it corresponds to the Belavin 
et al. instanton [3], whose action is 8rr2/g 2. Thus in the 
same WKB sense the In) ~ In + 1) amplitude is 
O(exp(_8n2/g2). This is a typical "tunnelling" amplitude, 
vanishing exponentially for small coupling and unseen 
by standard perturbation theory. Indeed, perturbation 
treatments of  gauge theories expand about Au = 0 and 
pretend that the vacuum in = 0) is true vacuum. Because 
of  vacuum tunnelling, this is completely wrong and 
causes perturbation theory to miss qualitatively sig- 
nificant effects. 

What then is the true vacuum? A convenient way of  
constructing it is to consider the generators o f  time 
independent gauge transformations characterized by a 
gauge function xa(x): 

Qx = f d d - l x [ F ~ i D i  Xa +g ./ vl 

where D i is the covariant derivative and g~ is the gauge 
source of  fields other than the gauge field itself. In 
order to satisfy Gauss' law, DiF~i = gJ~, it is sufficient 
to restrict the state space by Qxt~) = 0 for all gauge 
functions ~, which vanish at infinity. In particular, all 
our vacuum states In) are annihilated by such local 
gauge transformations. There also exist gauge functions 
which do not vanish at infinity and generate gauge 
transformations, T, which change the vacuum topology. 
One can easily construct a unitary T effecting such a 
non-local gauge transformation: T = exp(iG=.), with 
Go* (21r/g)[E(oo) + E ( -  oo)] for the two-dimensional 
abelian theory or Go. = (2n/g) f d2S.tEa~ a for the four- 
dimensional non-Abelian theory, and T satisfies Tin) = 
In + 1). 

Since T is a gauge transformation, the hamiltonian 
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commutes with it and energy eigenstates must be T 
eigenstates. Since T is unitary, its eigenvalues are e i° , 
0 ~< 0 ~< 27r, and the eigenstates are [0) = ~,e in° [n). 
This diagonalization of  H is obviously unaffected by 
including in Z? sources coupled to gauge invariant den- 
sities. Thus, each [0) vacuum is the ground state of  an 
independent and in general physically inequivalent 
sector within which we may study the propagation of  
gauge invariant disturbances. Since the different 0- 
worlds do not communicate with each other, there is 
no a-priori way of  deciding which world is the right 
one. It is gratifying that this multiplicity of  worlds is 
known to exist in the Schwinger model, correspond- 
ing there to different values of  background electric 
field [4]. 

Finally, we must express the functional integral, 
eq. (4), in 0 basis: 

(0'1 exp(-Ht)lO) .... ~ 6(0 - 0')1(0) 
t . . ~  ~ 

I(O) = ~ exp ( - iv0)  
1) 

×f[DA u ...j~ exp ( -  f d d x  [ ~?(A u ...) + -~gft ) 

= f [DAu'"J exp{-  f ddx[&?gf + ~?o]) (5) 

where ./2 o = (i0/8rr 2) tr (Fur ffuV)for d = 4, 
~o 0 = (i0/47r) eu~Fuv for d = 2 and in the second ex- 
pression for I(O) all gauge field topologies are summed 
over. I(O) contains all possible information about 
physics in the 0-world and requires no further modifi- 
cation. The second form for I(0) makes manifest one 
of  the peculiar ways in which the 0-worlds differ from 
one another. In four dimensional pure Yang-Mills 
theory, re-expressed in Minkowski coordinates, the 
effective Lagrangian is tr [FuuFU~ + (O/8n2F,,vFUV]. 
This clearly breaks P and T invariance (except for 
0 = 0) and we must in general expect spontaneous 
breaking of  space-time symmetries in all but a few 
special 0-worlds! 

As a concrete illustration of  these general remarks 
we should like to present an approximate evaluation 
of  I (0)  in two-dimensional charged scalar electro- 
dynamics. In the sector with v = -+ 1 the field config- 
uration with minimum action is just the Nielson-Olesen 
vortex [5] in which there is a localized region of  non- 

zero field of  flux +2n/g, radius/a -1 (/.t is the heavy 
photon mass), arbitrary location and total action, SO, 
proportional to la2/g 2 . We shall construct the sectors 
with topological quantum number v by superposing 
n+ v = + 1 vortices and n_ v = - 1  vortices with 
n+ - n_  = v, neglecting any interactions between vor- 
tices (since fields decrease exponentially this is not too 
bad for low vortex density, which turns out to mean 
small g). In this "dilute gas" approximation, the func- 
tional integral is 

(O'[exp(-Ht)[O) ~ 5(0% O) ~ exp ( - (n+  + n_)Si~ 
n+ ,n_=0  

x e x p ( i O ( , + - , _ ) )  ( V__V_] "÷+n- 
n+ ! n_ ! \ Vo! (6) 

where the factors of  V come from integrating over 
vortex locations and V 0 is a normalization factor which 
can be calculated from the quantum corrections to this 
basically semiclassical approximation. The sum is 
trivial and yields exp [2(V/Vo)e -S° cos 0). We have 
normalized the energy so that the naive perturbation 
theory vacuum energy is zero. By contrast, the 0 vacua 
have an energy per unit volume equal to -2V~ -1 cos 0 
e -S°  . Because S O cc 1 ]g2, this energy difference is a 
non-perturbative effect (a tunnelling effect) but poten- 
tially important nonetheless. Mthough the 0 = 0 
vacuum has lowest energy (and no parity violation) we 
can't conclude that it is the vacuum since the other 
0-vacua, though higher in energy are stable to gauge 
invariant perturbations. Having constructed a vacuum 
one can then calculate Green' functions of  gauge in- 
variant operators perturbatively. In the path integral 
this corresponds to performing ordinary perturbation 
theory about the appropriate classical solution for 
each topologically distinct sector and summing. 

If we try the above sort of  approximation on the 
non-abelian theory in four dimensions, there is a pro- 
blem. The classical theory is scale invariant and the basic 
v = 1 solution (instanton) has an arbitrary scale param- 
eter, ~, as well as an arbitrary position. The integration 
over ~. need not diverge since scale invariance is broken 
by quantum corrections. Indeed, the renormalization 
group should tell us whether the integral converges at 
the short distance end. In the dilute gas approxima- 
tion one finds for the vacuum energy density 
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o k g(X/u) z (7; 

where g(),]~) is the usual effective coupling, normaliz- 
ed so that g (h =/a) = g, ~ is arbitrary, and ~summar i -  
zing the effect o f  loop corrections, can be computed 
perturbatively. If the theory is asymptotically free 
and there are not too many quark multiplets, g can 
vanish rapidly enough for the integral to converge in 
the limit of  large )~ (small instanton size). This condi- 
tion is met for any pure SU(N) gauge theory and for 
SU(3) with no more than ten flavors of  quark. 

On the other hand, in the limit of  large instanton 
size, one is driven to large coupling (unless ~ has a 
small infrared fixed point) and the dilute gas approxi- 
mation breaks down (instanton overlap and have long 
range interactions). Thus the at tempt to construct the 
vacuum may run into an essential strong coupling pro- 
blem because the quantum corrections to vacuum 
tunnelling will be large for large instanton size. In 
fact, there may not be a sensible way of  perturbatively 
calculating even Green's functions of  gauge invariant 
operators, no matter  how small one makes g. This 
phenomenon is typical of  a theory with no inherent 
mass scale which produces masses dynamically. If one 
sets the renormalization mass scale, ~, equal to some 
physical mass (e.g. 4 x/~-0 ), then g is determined (di- 
mensional transmutati6n) and typically of  order 1. 

These problems should not, however, affect the 
standard applications of  asymptotic freedom which 
rely on one's ability to compute operator product ex- 
pansion coefficients at short distances. Precisely be- 
cause of asymptotic freedom, vacuum tunnelling is 
suppressed at arbitrarily small scales and leading short 
distance behavior will agree with conventional cal- 
culations. There will, however, be calculated non- 
leading terms suppressed by powers of  momentum,  
which reflect the mass scale set non-perturbatively by 
the tunnelling phenomenon. 

The arguments presented above require some modi- 
fication when massless fermions are present. We again 
confine non-zero Fur to a large but finite space-time 
volume, V, and again encounter a discrete infinity, 
(In)}, of  vacuum states characterized by a vacuum 
gauge field with winding number n and a standard 
fermi vacuum with all negative energy states filled. In 
principle we must allow for transitions between 
vacuum, and evaluate (n[ e-Ittlm) for general n and m. 

In fact, for massless quarks, (n le-Ht lm) o: fnm ! 
The reason for this is that, because of the anomaly, 

the conserved axial charge 

5 _  
flavor,color 

_tr{g2NeuvxoAv(bkAa+{AxAo)}32n 2 -  (8) 

while invariant under local gauge transformations, is 
not invariant under global gauge transformations. In 
particular, one has TQ5 T -1 = Q5 - 2N where T is 
the global gauge transformation, introduced earlier, 
which changes gauge field winding number by one 
unit and N is the number of  flavors. If the vacuum 
states of  different topology are defined by In) = T n 10), 
with Q510) = 0 one finds that Q5 In) = 2N. nln). How- 
ever, Q5 is conserved, so that it must be true that 
(nle-Htlm) ~" fin m" In general, we must find 
(nl e-l-KDvlm) ~ '6n_m, v where D v is any operator of  
chirality 2Nv (D v may stand for multiple insertions of  
local operators at different times - all that matters is 
net chirality). Therefore, we may replace eq. (4) by 

(nl e-Htl m) 

-+fnm f [DAu.'.]O exp{- f dax[~(A~, ...) +~f]  ) 
and 

(nle-HtDulm) -~ fn+v,m f [DA~,...] ~O, 

× exp (-fdax [~(X....) + ~gfl ) 
(10) 

with the same meaning still attached to D v. The restric- 
tion on the topology of  the gauge field histories would 
actually have emerged directly from a mindless appli- 
cation of  eq. (4): Doing the fermion integrations for 
fixed A u yields [det(~ - ~ ) ]  +1. This determinant 
vanishes whenever (~f - 4/) has a zero eigenvalue. 
't  Hooft [6] has noted that i fA u is taken equal to the 
v = +1 or v = -1.  instanton there is a zero eigenvalue, 
and our argument is just telling us that whenever Au 
belongs to a v 4:0  class, (j~ - 4~) has a zero eigenvalue, 
eliminating the v 4:0  sectors from the integration. 

Though vacuum tunnelling is now suppressed, the 
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In) vacua are not acceptable because they violate 
cluster decomposition for operators of non-zero 
chirality. Consider an operator D of chirality 2N. The 
arguments of  the preceeding paragraph show that 
(nlD ln) = O, (n + l lDln)4:  0. Then (n lD+(x)DO,)ln) 
will not vanish for large Ix - y I as required by cluster 
decomposition and the vanishing of the "vacuum" ex- 
pectation (n ID In): it obviously approached 
(n I D+ln + 1)(n + 1 I D In). The solution to this pro- 
blem is obvious (it was solved in the Schwinger model 
years ago!): The proper vacuum states are the 10) 
vacua, in which basis the functional integrals have the 
form 

(O'[e-Ht[o) -, ~(o'- o) f [DA,...](o ) 

X exp{-fdax[2(A,.. .)  + 2gf] } 

(O'[e-HtDvlO) -~ 8 ( 0 ' -  o) f [DA....] (~) 

X e x p { -  fdax [fl(Au...) + ~gf] }D~. (11) 

The cluster problem is resolved by the non-vanishing 
vacuum expectation value of D in the true vacuum 
state. The fact that only one topological class of gauge 
field history contributes to each functional integral 
makes physical quantities have a trivial dependence on 
0: The vacuum energy density, while non-zero, is in- 
dependent of 0. The variation of the vacuum energy 
with respect to 0 is just (tr FuvFUV), the quantity 
whose non-zero value is the signal for P and T viola- 
tion. In the massless fermion case, P and T appear not 
to be spontaneously violated and, indeed, all the 10) 
vacua are physically equivalent. Finally, the axial 
baryon number invariance of the original Lagrangian 
is violated by a vacuum expectation value of operators 
with non-zero chirality. It should be said that at this 
stage we have in the N-flavor case, only broken axial 
U(I) and not axial SU(N). Actually, since the axial 
charge rotates 0, a discrete subgroup of order 2N of 
U(1) is left unbroken, consisting of those elements 
which rotate 0 by a multiple of 27r. There is no as- 
sociated Goldstone boson because the conserved, but 
gauge-variant, U(1) charge takes one out of a given 
10) sector (e i~Q s[0)= l0 + 2Na)) while tr(F_~), the 
divergence of the gauge invariant axial current, has 
non-vanishing matrix elements. That Q5 causes transi- 
tions between different vacua is characteristic of the 

"vacuum seizing" mechanism postulated by Kogut 
and Susskind [2] while the non-vanishing of FF  in 
instanton solutions as a possible escape from the U(I) 
problem was noted by G. 't Hooft [7]. 

Although the presence of zero mass fermions sup- 
presses vacuum tunnelling in the strict asymptotic sense, 
tunnelling does have a profound effect on the vacuum 
energy and other physically relevant quantities. When 
the vacuum tunnels, fermion pairs are produced. Al- 
though the pair must ultimately be absorbed by an 
anti-tunnelling, since the fermions are massless the 
pair may live for a long time and tunnelling occurs 
freely in intermediate states. To get some notion of 
what goes on it is instructive to attempt a crude cal- 
culation of the basic functional integrals of eq. (11) 
in the case of a single flavor. 

We shall assume that the integral over Au is domi- 
nated by configurations of widely separated instantons 
(n+ in number) and anti-instantons (n_ in number). To 
compute the vacuum energy we must set n+ = n_ (con- 
figurations with v = 0), sum over n+ and integrate over 
instanton locations. We will ignore the integration over 
instanton sizes. For a given gauge field configuration, 
the integration over fermi fields yields det(~ - j ) .  This 
determinant must also be approximated. 

Now, as 't Hooft has pointed out [7], individual 
instantons have a zero-energy eigenfunction C0 ± (x, x±) 
(x± is the instanton location and the +- label distinguishes 
instanton from anti-instanton). Since the interesting 
physical effects arise precisely from these zero energy 
solutions, we shall compute the determinant of (~ - 41) 
in the subspace spanned by the 2n+ functions 
C0 +(x, xi +), CO (x, xt:-). In the widely separated in- 
stanton approximation, these functions are orthonor- 
real and one has to compute the determinant of the 
matrix 

M,j = (c~,;I 0 - ~)1%, j). 

In this approximation A~ differs from a gauge trans- 
Formation only in the neighborhood of each instanton 
and Mii can be approximated by 

~+ M / / ~ (  0, i1(- ~)-ll~b~,/) 

where q~0 = ~C0. The 75 structure of the C0 forbids 
i and j to be both instantons or both anti-instantons. 
The C0 fall off at large distances.exactly like the free 
fermi propagator, which is why we introduce the S0 's 
which are localized as well as the instanton itself. The 
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cycle expansion of the determinant then gives a sum 
of terms with a graphical interpretation in terms of 
closed fermion loops. For instance, if n+ = n_ = 1 we 
get 

Det ~ (~b~](~) -1 [q5~)(O~ t (~) -1 [q5~), 

which has the obvious interpretation of massless 
quark propagators connecting non-local vertices, 
V + * P = ¢0+(x)¢0±(x ), associated with the instantions. 
The functional integral weights each vertex with a fac- 
tor proportional to e -$cl, where Scl is the instanton 
classical action. The 75 structure of ¢~ is such that 
V ± is like ~(1 + 75)~ in its Dirac matrix structure, 
which is to say that V ± looks like a non.local, or 
momentum-dependent mass term. Summing over num- 
bers and locations of instantons simply completes the 
vacuum fermion loop analogy by providing all pos- 
sible insertions of the pseudo mass terms, V +, on mass- 
less quark loops. Then calculations of physical quanti- 
ties proceed in a perfectly conventional way so long as 
we remember to add the mass term ~ e-Scl(V+ + V_) 
to the massless quark propagator. Anything which 
directly depends on the mass term, such as the vacuum 
expectation of t~k, will be proportional to e -scl  and 
will have only the by now familiar dependence on g 
characteristic of a tunnelling process. In the "scale 
invariant" four dimensional theory {t~ff) q: 0 implies 
spontaneous generation of mass and dimensional trans- 
mutation as before. 

If the fermion is given a bare mass tunnelling is 
allowed and one is driven directly to a 0 vacuum 
(whose energy depends on 0). The limit of  zero mass 
is smooth. If the bare mass is small compared to the 
spontaneously generated mass, it acts as a small per- 
turbation on the m 0 = 0 theory. 

If there are N flavors, the above discussion is modi- 
fied in an important way: the effective instanton- 
quark interaction is no longer billinear, but 2N-linear. 
Indeed, the instanton (anti-instanton) vertex has the 
structure V+ = HNI~i(1 + 75)1~i (V_ = I I N I ~ i ( I  -- 3'5) 
~bi). As a result, summing over instantons in the dilute 
gas approximation will not just produce a mass term in 
the quark propagator, but does something more com- 
plicated. To produce a quark mass term, one must 
break the global chiral SU(N), while we have argued 
that the vacuum tunnelling phenomenon is only guar- 
anteed to violate the chiral U(1) symmetry. On the 
other hand, the effective interactions between quarks 

of different helicity generated by the instanton pro- 
vide new ways of identifying sums of graphs which 
can lead to the desired symmetry breakdown. We have 
constructed a simple Hartree-Fock type argument for 
N = 2 which has a chance of being correct in a weak 
coupling theory and which seems, on superificial ex- 
amination, to generate quark masses. The inevitable 
Goldstone bosons arise in this case from iterated bubble 
graphs generated by the four-fermion interactions, IT_+. 
We do not wish to make too much of these crude 
arguments other than to suggest that the new inter- 
actions generated by vacuum tunnelling are likely to 
play a key role in generation of quark masses and 
Goldstone bosons. 

In terms of the picture presented here Polyakov's 
ideas about confinement appear as follows. For an 
isolated quark located at x the tunnelling amplitude 
In, x) --* In + 1, x) will be reduced relative to the vacuum 
to vacuum amplitude. A quark state will then have 
more energy than the vacuum, as it should. In the 
dilute gas approximation the energy difference is pro- 
portional to the integral over all instantons which over- 
lap the quark. Integrating over instanton locations and 
then over the scale size X -1 leads to an integral which 
tends to diverge at small ),. For the large instantons 
(small X), however, the dilute gas approximation is 
not valid, and one is again confronted with a strong 
coupling problem. 

Obviously, much remains to be done to fully ex- 
ploit the phenomena we have found. The major dif- 
ficulty, of course, is that the theory we are really in- 
terested in, quantum chromodynamics, is basically a 
strong coupling theory and reliable calculations are 
difficult, if not impossible. However, one may hope that 
a new understanding of the qualitative physics will 
suggest new methods of calculation. We are especially 
encouraged by the appearance, already in semiclassical 
approximations, of a vacuum that breaks chiral sym- 
metry and sets a dynamical mass scale. We are also 
intrigued by the natural appearance of spontaneous 
violation of P and T invariance but have so far not 
seen how to understand why these effects are small in 
the real world or how to exploit them to explain obser- 
ved violations of these symmetries. Perhaps super-uni- 
fied theories will shed some light on these questions. 

One of us (D.J. Gross) would like to acknowledge 
V.N. Gribov for stimulating conversations and in par- 
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ticular for the suggestion that the Euclidean solitons 
might be relevant to the structure of the vacuum. 
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